Araguspongine C Induces Autophagic Death in Breast Cancer Cells through Suppression of c-Met and HER2 Receptor Tyrosine Kinase Signaling

نویسندگان

  • Mohamed R. Akl
  • Nehad M. Ayoub
  • Hassan Y. Ebrahim
  • Mohamed M. Mohyeldin
  • Khaled Y. Orabi
  • Ahmed I. Foudah
  • Khalid A. El Sayed
چکیده

Receptor tyrosine kinases are key regulators of cellular growth and proliferation. Dysregulations of receptor tyrosine kinases in cancer cells may promote tumorigenesis by multiple mechanisms including enhanced cell survival and inhibition of cell death. Araguspongines represent a group of macrocyclic oxaquinolizidine alkaloids isolated from the marine sponge Xestospongia species. This study evaluated the anticancer activity of the known oxaquinolizidine alkaloids araguspongines A, C, K and L, and xestospongin B against breast cancer cells. Araguspongine C inhibited the proliferation of multiple breast cancer cell lines in vitro in a dose-dependent manner. Interestingly, araguspongine C-induced autophagic cell death in HER2-overexpressing BT-474 breast cancer cells was characterized by vacuole formation and upregulation of autophagy markers including LC3A/B, Atg3, Atg7, and Atg16L. Araguspongine C-induced autophagy was associated with suppression of c-Met and HER2 receptor tyrosine kinase activation. Further in-silico docking studies and cell-free Z-LYTE assays indicated the potential of direct interaction between araguspongine C and the receptor tyrosine kinases c-Met and HER2 at their kinase domains. Remarkably, araguspongine C treatment resulted in the suppression of PI3K/Akt/mTOR signaling cascade in breast cancer cells undergoing autophagy. Induction of autophagic death in BT-474 cells was also associated with decreased levels of inositol 1,4,5-trisphosphate receptor upon treatment with effective concentration of araguspongine C. In conclusion, results of this study are the first to reveal the potential of araguspongine C as an inhibitor to receptor tyrosine kinases resulting in the induction of autophagic cell death in breast cancer cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors

Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...

متن کامل

Met receptor contributes to trastuzumab resistance of Her2-overexpressing breast cancer cells.

Her2 is overexpressed in 20% to 30% of breast tumors and correlates with reduced disease-free and overall patient survival. Trastuzumab, a humanized monoclonal antibody directed against Her2, represents the first Her2-targeted therapy, which decreases the risk of relapse and prolongs patient survival. Resistance to trastuzumab, both inherent and treatment-acquired, represents a significant barr...

متن کامل

Generation of CHO Stable Cell Line Overexpressing HER2: an In Vitro Model for Breast Cancer

Background: Breast cancer is the most common female malignancy and the leading cause of cancer mortality in women worldwide. The human epidermal growth factor receptor2 (HER2) is a transmembrane tyrosine kinase receptor that is usually overexpressed in human breast cancers. Stable cell lines heterogeneously overexpressing HER2 are highly required as in vitro models for breast cancer research. T...

متن کامل

AMP-activated kinase (AMPK) regulates activity of HER2 and EGFR in breast cancer

AMP-activated Protein Kinase (AMPK) activity retards growth of many types of cancers. Investigating effects of AMPK activation on breast cancer cell signaling and survival, we found that breast cancer cell lines with amplification and over-expression of HER2 or EGFR are 2- to 5-fold more sensitive to cytotoxic effects of AICAR, a canonical pharmacological activator of AMPK, than breast cancer c...

متن کامل

Advances in Brief ZD1839, a Specific Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitor, Induces the Formation of Inactive EGFR/HER2 and EGFR/HER3 Heterodimers and Prevents Heregulin Signaling in HER2-overexpressing Breast Cancer Cells

Purpose: ZD1839 is a tyrosine kinase inhibitor of the epidermal growth factor receptor (EGFR) that has shown clinical activity against EGFR-expressing tumors. Our aim was to explore the effects of ZD1839 in breast cancer cell lines expressing different levels of EGFR and the closely related HER2 receptor. Experimental Design: We studied the growth-inhibitory effects of ZD1839 in a series of bre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2015